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Abstract
In a plasma formed by charged and neutral particles, the first species should
evolve according to the laws of magnetohydrodynamics while the second would
obey the Navier–Stokes equations. However, collisions between both species
provide a friction that couples their motion and has important consequences in
the long-term evolution of the plasma. It is found that there exist long periods
of stability where the energy of each species as well as the magnetic energy
tends to be roughly constant, punctuated by short intervals of rapid transfer of
energy. Since at these events both the Lorentz force and the Hall term are very
large, they could be identified as episodes of fast magnetic reconnection.

PACS numbers: 02.30.Jr, 52.30.Cv, 52.30.Ex, 96.60.Iv

1. Introduction

In several astrophysical phenomena the interplay between plasma flow and magnetic field
seems to have some degree of time intermittency. The classical example is the sudden
transformation from magnetic to kinetic energy present in solar flares, although this occurs
in a fully ionized plasma, not in the partially ionized ones we will study. More appropriate
would be the localized heating in a dense interstellar medium [1] or the formation of meteoritic
chondrules in protoplanetary discs [2]. We will prove rigorously that there exists a situation
where long-term evolution, if it allows any interchange between kinetic and magnetic energy,
must do so in an intermittent manner. Moreover, whenever an energy transfer exists, all
classical ingredients of magnetic reconnection are present: there must exist a large Lorentz
force, and therefore a large mean current, and the curl of the Lorentz force (the so-called Hall
term) is also large. The situation we are describing occurs when the plasma is not totally
ionized, and thus part of it does not respond to the magnetic field; however, ions and neutrals
collide often enough to produce a friction which makes both species to tend to drag together.
Electrons and ions, however, are assumed coupled, so that we do not deal with electron
magnetohydrodynamics (MHD) but rather with the conventional Navier–Stokes and MHD
equations coupled by the collision term. This causes the so-called ion-neutral or ambipolar
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drift, which plays an important role e.g. in galactic dynamos. It was introduced as far back
as 1956, by Mestel and Spitzer [3], and its formulation is straightforward. We will assume
that both species are inviscid, which is a fair approximation in astrophysical problems, and
incompressible: this certainly does not hold in galactic or stellar plasmas, but we adopt it in
the interest of simplicity. Then the velocity vn of the neutrals satisfies the Navier–Stokes (or
rather the Euler) equation

ρn

∂vn

∂t
= −ρnvn · ∇vn − ∇Pn + ρnνni(vi − vn), (1)

where ρn is the (constant) density of the neutrals, Pn the kinetic pressure, νni the neutral-ion
collision frequency, vi the ion velocity: the last term provides the drag between both species.

As for the ion velocity, it also satisfies the Euler equation, but with the forcing provided
by the Lorentz force:

ρi

∂vi

∂t
= −ρivi · ∇vi − ∇Pi + ρiνin(vn − vi ) + J × B, (2)

where ρi is the ion density, Pi the kinetic pressure, νin the ion-neutral collision frequency: one
has ρiνin = ρnνni = k > 0. In the limit k → 0 we would have two uncoupled equations, a
Navier–Stokes one for the neutral particles and an MHD system for the ions, and both species
would follow their own path without interfering. In the limit k → ∞, as we will see, either
both velocities are equal or they would collapse catastrophically to zero. B is the magnetic
field, J = ∇ × B the current density. There would be no mathematical problem adding
viscosity and its associated diffusive terms, but we want to emphasize precisely that even in
the absence of diffusion the collisions provide a sink of kinetic energy which accounts for a
peculiar evolution: the presence of viscosity would only mask these characteristics.

As for the magnetic field, we could take by analogy the ideal (no resistivity) induction
equation:

∂B
∂t

= ∇ × (vi × B). (3)

Nonetheless, in our case we must refine this equation somewhat if we wish to account for
energy conversion through magnetic reconnection. It is well known that early efforts to explain
fast reconnection in terms of classical resistivity were not entirely successful. The problem
lies in the fact that the reconnection region is so narrow that the flow of plasma towards it gets
throttled by the slow ejection [4, 5]. While the full description of what happens at the current
sheets, where ions and electrons part, needs the two-fluid MHD equations, the inclusion of the
Hall term −h∇ × (J × B) is enough to obtain a workable model. Resistivity should also be
present, even if its value is very small. Thus we take as induction equation

∂B
∂t

= ∇ × (−ηJ + vi × B − hJ × B), (4)

where we assume that all the magnitudes, and therefore all constants, have been non-
dimensionalized by dividing by some typical parameters e.g. length scale, mean magnetic
field strength, Alfvén velocity, etc. An appropriate choice of these reference magnitudes is
important in numerical models and when numerical data are presented, but for our qualitative
purposes they are not that relevant. We will assume, however, that the magnetic Reynolds
number η−1 is large, i.e. that η is much smaller than the remaining constants k and h, h being
the Hall coefficient. Thus the Ohmic loss of magnetic energy works on much larger time
scales than the other effects.

In weakly ionized plasmas ρi ∼ 0, which means that the Lorentz force must balance the
friction:

vi − vn = J × B
k

. (5)
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In this case, called the strong coupling approximation, numerical simulations apparently show
the generation of sharp magnetic structures [6, 7], which favour the presence of magnetic
reconnection. We will not, however, make this hypothesis and allow for arbitrary relative
velocities of ions and neutral particles. Hence we take (1), (2) and (4) as our basic equations,
and assume that solutions smooth enough exist for all time. As for the boundary conditions,
the order of each equation must be taken into account in order not to overdetermine the system.
Thus, if we consider that the flow does not leave the smooth domain �, the normal component
of both velocities must be zero at its boundary, and no further boundary conditions may be
imposed:

vn · n|∂� = vi · n|∂� = 0.

As for the magnetic field, since it obeys the parabolic equation (4), three conditions may be
imposed. A standard one is B · n = 0 at ∂�, which would occur e.g. if the field outside � is
zero. However, in most cases this is not so; moreover, the classical picture of formation of
current sheets [8] involves the motion of the foot points of magnetic field lines at the boundary,
transported there by vi : when the field is tangential to the boundary this argument loses its
meaning. What really happens, at least for insulator boundaries, is J · n = 0 at ∂�. This
suggests choosing B × n = 0 at the boundary as our condition for the field; we could still take
a third condition, but it will be irrelevant to our proofs. Therefore we assume

vn · n|∂� = vi · n|∂� = 0; B × n|∂� = 0. (6)

2. Energy balance

To obtain the main energy inequalities we multiply (1) by vn, (2) by vi , (4) by B and integrate
in �. The following terms vanish: for j = n, i,

∫
�

vj · ∇vj · vj dV = 1

2

∫
�

vj · ∇v2
j dV = 1

2

∫
∂�

v2
j vj · n dσ = 0 (7)

∫
�

∇Pj · vj dV =
∫

∂�

Pj vj · n dσ = 0. (8)

On the other hand, J × B = B · ∇B − (1/2)∇B2,∫
�

∇B2 · vi dV =
∫

∂�

B2vi · n dσ = 0. (9)

Also, ∇ × (vi × B) = B · ∇vi − vi · ∇B, and∫
�

(vi · ∇B) · B dV = 1

2

∫
∂�

B2vi · n dσ = 0. (10)

Since B × n = 0, [(J × B) × B] · n = (J × B) · (B × n) = 0 at ∂�, which implies∫
�

[∇ × (J × B)] · B dV =
∫

∂�

[(J × B) × B] · n dσ +
∫

�

(J × B) · J dV = 0. (11)

Finally

−
∫

�

(∇ × J) · B dV = −
∫

∂�

(J × B) · n dσ −
∫

�

J 2 dV = −
∫

�

J 2 dV. (12)

The following identities result:

1

2
ρn

∂

∂t

∫
�

v2
n dV = k

∫
�

vn · (vi − vn) dV, (13)
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1

2
ρi

∂

∂t

∫
�

v2
i dV = k

∫
�

vi · (vn − vi ) dV +
∫

�

(B · ∇B) · vi dV, (14)

1

2

∂

∂t

∫
�

B2 dV = −η

∫
�

J 2 dV +
∫

�

(B · ∇vi ) · B dV. (15)

Since B · ∇(vi · B) integrates to zero, by adding these three identities we find
1

2

∂

∂t

∫
�

(
ρnv

2
n + ρiv

2
i + B2

)
dV = −k

∫
�

|vi − vn|2 dV − η

∫
�

J 2 dV. (16)

Hence the total (kinetic plus magnetic) energy E(t) decreases in time. Since we have assumed
η � 1, the main cause of this decrease is the friction between ions and neutrals, which
ceases when both velocities coincide. Unless this is the case, the total energy would collapse
catastrophically when k → ∞.

From (16) and the positivity of the energy it follows∫ ∞

0

∫
�

|vi − vn|2 dV dt =
∫ ∞

0
‖vi − vn‖2

2 dt < ∞, (17)

∫ ∞

0
dt

∫
�

J 2 dV < ∞. (18)

Note that (18) does not hold in the presence of current sheets: our description is only valid
as long as the MHD approximation holds. The integrability in time of ‖vi − vn‖2

2 is the key
factor in the following arguments. A positive integrable function does not need to tend to zero
when t → ∞, although it really tends to zero for most times: since∫ ∞

T

‖vi − vn‖2
2 dt → 0

when T → ∞ and this expression decreases with T, for every ε > 0 there exists the smallest
possible Tε such that∫ ∞

Tε

‖vi − vn‖2
2 dt � ε2.

Let Fε ⊂ [Tε,∞) be the set of instants t such that ‖vi (t) − vn(t)‖2
2 > ε. If we denote the

one-dimensional measure by m,

εm(Fε) �
∫

Fε

‖vi − vn‖2
2 dt �

∫ ∞

0
‖vi − vn‖2

2 dt � ε2,

we find m(Fε) � ε. Thus, for all times T /∈ Fε ,

‖vi (T ) − vn(T )‖2
2 � ε, (19)

and this occurs for all T outside a set of measure less than ε. From now on, we will say that
an interval [T1, T2] is ε-regular if T1 � Tε , and neither of the Ti belongs to Fε .

3. Functional spaces

We will recall here some basic facts about the function spaces that will be used later. L2(�)

is the space of square integrable functions in �, whose norm we have denoted by ‖ ‖2.
The Sobolev space Hm(�) is formed by the functions m times differentiable, and whose
differentials up to the order m belong to L2(�). The norm in Hm(�) is, except by equivalences,

‖f ‖Hm =
∑

|α|�m

‖Dαf ‖2.
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For s > 0 a real non-integer number, Hs(�) may be defined by interpolation. It happens that,
in dimension three, Hs(�) ⊂ C(�̄) if s > 3/2, where �̄ represents the closure of �, and
also the maximum norm ‖f ‖∞ � M‖f ‖Hs ; in the future all universal constants, depending
only on �, will be denoted by M to avoid proliferation of constants. We will assume that �

is simply connected, i.e. every closed loop is continuously contractible to a point; this implies
that every irrotational field is a gradient.

Let X0 be the subspace of L2(�)3 formed by the functions of divergence zero and whose
normal component vanishes at ∂� (both operations in the sense of distributions). X0 is a
closed subspace of L2(�)3, the orthogonal of ∇H 1(�) (the gradients of functions of H 1(�)).
This orthogonality is easy and instructive to prove in one direction:∫

�

f · ∇ψ dV =
∫

�

∇ · (ψf) dV =
∫

∂�

ψf · n dσ = 0.

Hence

L2(�)3 = X0 ⊕ ∇H 1(�).

This decomposition may be generalized: if Xs = Hs(�)3 ∩ X0,

Hs(�)3 = Xs ⊕ ∇Hs+1(�). (20)

This decomposition is not orthogonal with respect to the inner product of the space Hs , but
nonetheless it represents a topological sum, in the sense that both projections are continuous.
These projections form a Hodge-like decomposition of the functions of Hs(�), and may be
found as follows: we set f = g+∇ψ . Since we demand that ∇ ·g = 0, necessarily ∇ ·f = 
ψ .
The condition g · n = 0 at ∂� completes the definition of ψ as the solution of the Neumann
problem


ψ = ∇ · f,
∂ψ

∂n

∣∣∣∣
∂�

= f · n.

The solution is unique except for an additive constant, which will not matter as we are only
interested in ∇ψ . Standard results on elliptic problems tell us that if we fix the solution of the
Neumann problem by some other condition such as

∫
�

ψ dV = 0, we have

‖ψ‖Hs+1 � M‖∇ · f‖Hs−1;
therefore

‖∇ψ‖Hs � M‖f‖Hs ,

which proves the continuity of the second projection in (20); since both projections add to the
identity, the first one is also continuous.

The same argument may be applied to the Hölder spaces Ck,α(�), 0 < α < 1, formed by
the functions k times differentiable whose kth differentials satisfy a Hölder condition of order
α. In particular

C1,α(�)3 = (C1,α(�)3 ∩ X0) ⊕ ∇(C2,α(�)). (21)

Let us consider now a different subspace Ys of Hs(�)3: the functions of divergence zero such
that its tangential component vanishes at the boundary. It is known that the curl operator takes
Ys bijectively in Xs−1, and in fact the mapping is bicontinuous with the respective Hs norms
(see e.g. [9] for the case s = 1; the generalization is straightforward). This implies that if
we denote by Hs

t (�) the subspace of the functions of Hs(�)3 formed by the functions whose
tangential component vanishes at the boundary, the curl operator ∇× : Hs+1

t (�) → Xs is
surjective and continuous. In fact Hs+1

t (�) is the topological sum of Ys+1 and the kernel of the
curl, formed by the gradients of functions constant at the boundary.

Finally recall that the subspace Hs
0 (�) is formed by the functions vanishing at the

boundary, and its dual space is denoted by H−s(�). We will handle a series of inequalities in
dual norms (weak estimates), all of which will be stronger than H−s estimates.
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4. Averages in ε-regular intervals

By subtracting (2) from (1), we find

∂(vn − vi )

∂t
= vi · ∇vi − vn · ∇vn − 1

ρn

∇Pn +
1

ρi

∇Pi

+ k

(
1

ρn

+
1

ρi

)
(vi − vn) − 1

ρi

(J × B). (22)

Let f ∈ Xs, s > 5/2. (Analogous results may be found by assuming f ∈ C1,α(�) ∩ X0).
Multiplying (22) by f and integrating �, we find∫

�

(J × B) · f dV = ρi

∂

∂t

∫
�

(vi − vn) · f dV + ρi

∫
�

(vn · ∇f · vn − vi · ∇f · vi ) dV

+ k

(
ρi

ρn

+ 1

) ∫
�

(vi − vn) · f dV, (23)

where we have used the identities∫
�

vi · ∇(vi · f) dV =
∫

�

vn · ∇(vn · f)dV = 0
∫

�

∇Pi · f dV =
∫

�

∇Pn · f dV = 0.

We have∣∣∣∣
∫

�

vi · ∇f · vi − vn · ∇f · vn dV

∣∣∣∣ =
∣∣∣∣
∫

�

vn · ∇f · (vi − vn) + (vi − vn) · ∇f · vi dV

∣∣∣∣
� (‖vn‖2 + ‖vi‖2)‖∇f‖∞‖vi − vn‖2 � 2E(0)‖f‖Hs ‖vi − vn‖2. (24)

E(0) represents the total energy at the instant zero. Also∣∣∣∣
∫

�

(vi − vn) · f dV

∣∣∣∣ � ‖vi − vn‖2‖f‖2 � ‖vi − vn‖2‖f‖Hs . (25)

Hence

±
∫

�

(J × B) · f dV � ±ρi

∂

∂t

∫
�

(vi − vn) · f dV

+ k

(
ρi

ρn

+ 1

)
‖vi − vn‖2‖f‖Hs + 2ρiE(0)‖vi − vn‖2‖f‖Hs . (26)

Integrating in the interval [T1, T2] yields∣∣∣∣
∫ T2

T1

(J × B, f) dt

∣∣∣∣ � ρi |‖(vi − vn)(T2)‖2 − ‖(vi − vn)(T1)‖2|‖f‖Hs

+

[
k

(
ρi

ρn

+ 1

)
+ 2ρiE(0)

]
‖f‖Hs

∫ T2

T1

‖vi − vn‖2 dt. (27)

The inequality of Schwarz yields
∫ T2

T1

‖vi − vn‖2 dt �
√

T2 − T1

(∫ T2

T1

‖vi − vn‖2
2 dt

)1/2

� ε
√

T2 − T1.

Since we assume that T1, T2 /∈ Fε ,

|‖(vi − vn)(T2)‖2 − ‖(vi − vn)(T1)‖2| � ε,

which proves that the time average

〈J × B〉T1,T2 = 1

T2 − T1

∫ T2

T1

J × B dt,
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satisfies the following inequality:

∣∣(〈J × B〉T1,T2 , f
)∣∣ � 1√

T2 − T1

(
2ρi√

T2 − T1
+ k

(
ρi

ρn

+ 1

)
+ 2ρiE(0))

)
ε‖f‖Hs . (28)

This represents a weak bound on 〈J × B〉. We see that it cannot be used to obtain an estimate
on J × B at a precise instant, because the right-hand side of the inequality goes to infinity:
the larger the interval and the smaller the ε (i.e. for large times) the sharper is the estimate.
Unfortunately, the space Xs is very particular and one does not get an idea of the real size of
〈J × B〉 only in terms of its action on Xs . To solve this, we recall the Hodge decomposition
on (20):

Hs(�)3 = Xs ⊕ ∇Hs+1(�).

The dual space of Xs may be identified with the dual of Hs(�)3 modulo the functionals
vanishing at Xs . Those have the form

f →
∫

�

f · ∇ψ dV,

for some ψ such that ∇ψ ∈ (H s(�)3)∗: thus ψ is a distribution of order at most one. By
including all the constants (including those corresponding to the projections in the topological
sum) in a single M, we find that there exists ψ such that

∥∥〈J × B〉T1,T2 − ∇ψ
∥∥

Hs(�)∗ � M√
T2 − T1

(
1 +

1√
T2 − T1

)
ε. (29)

Thus the averages of J × B are close in the (H s)∗ weak sense to gradients for most of the
intervals [T1, T2] (i.e. when neither of Ti belongs to Fε). This is an approximation of the
equation for magnetostatic equilibria J × B = ∇p. The fact that solutions of this equation
are notoriously difficult to find and are usually unstable, or at best marginally stable, proves
that for most times the averages of the magnetic field lie near a narrow set of possible states. In
[7, 12], it is asserted that the current must be concentrated in sheets while the rest of the plasma
is current free: we are unable to reach this conclusion in our more general setting.

It seems logical that since the Lorentz force is close to a gradient, its curl (and therefore
the Hall term) must be small at least in time average. We can prove this as follows: by the
surjective and continuous character of the curl operator when considered from Hs+1

t (�) into
Xs as stated before, we may rewrite (28) as

∣∣(〈J × B〉T1,T2 ,∇ × F
)∣∣ � M√

T2 − T1

(
1 +

1√
T2 − T1

)
ε‖F‖Hs+1 . (30)

Since [(J × B) × F] · n = 0 at ∂� for all F ∈ Hs+1
t (�), (30) means

∣∣(〈∇ × (J × B)〉T1,T2 , F
)∣∣ � M√

T2 − T1

(
1 +

1√
T2 − T1

)
ε‖F‖Hs+1 , (31)

i.e. ∥∥〈∇ × (J × B)〉T1,T2

∥∥
Hs+1

t (�)∗ � M√
T2 − T1

(
1 +

1√
T2 − T1

)
ε. (32)

Note that since Hs+1
0 (�)3 ⊂ Hs+1

t (�), the dual norm of the last space is stronger than the
H−s−1(�) norm. Thus the Hall term has in average a small size for ε-regular intervals.

Note that so far our conclusions do not depend on the size of h. In fact the Hall term in
the induction equation has played no role at all, since it disappears in the energy identities.
Thus the fact that ‖vi − vn‖2 is square integrable in time, and its consequence concerning the
proximity of the Lorentz force to a gradient, are independent of the Hall effect. Hence the rarity
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of episodes of kinetic energy transfer is general in the presence of ambipolar diffusion, but
this does not mean that the Hall effect does not play any role in the number of such events and
in the behaviour of the field in them. After all, the Hall term occurs in the induction equation,
which governs the global evolution. It is only that energy inequalities, which form the basis
of our arguments, are blind to the Hall term. Interestingly, a model where independently of
ion-neutral diffusion, rare events of fast magnetic reconnection occur between large intervals
of slow (Sweet–Parker) one, exists [10]; and fast reconnection due only to ambipolar diffusion
has also been proposed [11]. Thus both mechanisms are plausible, and it is likely that both
play a role in our situation; but the integral inequalities we handle are unable to discriminate
between them.

Let us now study the behaviour of both kinetic energies and the magnetic one at the
ε-regular intervals. Since (13) implies

ρn

∂

∂t
‖vn‖2

2 = k

∫
�

(vi − vn) · vn dV � k‖vi − vn‖2‖vn‖2 � kE(0)‖vi − vn‖2, (33)

integrating in any time interval [T1, T2],

ρn

∣∣‖vn(T2)‖2
2 − ‖vn(T1)‖2

2

∣∣ � kE(0)
√

T2 − T1

(∫ T2

T1

‖vi − vn‖2
2 dt

)1/2

. (34)

Hence, for all T1 � Tε ,
∣∣‖vn(T2)‖2

2 − ‖vn(T1)‖2
2

∣∣ � kE(0)

ρn

ε
√

T2 − T1. (35)

This estimate is independent of the set Fε . It says that∣∣‖vn(T2)‖2
2 − ‖vn(T1)‖2

2

∣∣ = o(
√

T2 − T1),

when T1 → ∞; it does not imply that ‖vn‖2 tends to become constant, since any growth of the
form ‖vn‖2 ∼ tβ, β < (1/4), would satisfy the bound. Still, (35) does not allow very rapid
variations of the neutrals’ kinetic energy.

For the rest of the energies we need to assume that the interval [T1, T2] is ε-regular. In
this case, (19) together with (35) yields∣∣‖vi (T2)‖2

2 − ‖vi (T1)‖2
2

∣∣ � |‖vi (T2)‖2 − ‖vn(T2)‖2| · |‖vi (T2)‖2 + ‖vn(T2)‖2|
+

∣∣‖vn(T2)‖2
2 − ‖vn(T1)‖2

2

∣∣ +
∣∣‖vi (T1)‖2 − ‖vn(T1)‖2

∣∣ · |‖vi (T1)‖2 + ‖vn(T1)‖2|
� 4

√
ε
√

E(0) +
kE(0)

ρn

ε
√

T2 − T1. (36)

Finally, since the total energy satisfies (16), we find∣∣‖B(T2)‖2
2 − ‖B(T1)‖2

2

∣∣ � ρn

∣∣‖vn(T2)‖2
2 − ‖vn(T1)‖2

2

∣∣ + ρi

∣∣‖vi (T2)‖2
2 − ‖vi (T1)‖2

2

∣∣
+ k

∫ T2

T1

‖vn − vi‖2
2 dt + η

∫ T2

T1

‖J‖2
2 dt, (37)

which, together with (35), (36) and the integrability of the ‖vn −vi‖2
2 and ‖J‖2

2, yields a similar
bound for the difference of magnetic energies in the limit of an ε-regular interval.

5. Behaviour of the magnetic field during transfers of kinetic energy

We are interested in the intervals where there is a rather large jump in the value of ‖vn − vi‖2
2

between the points T1 and T2. Thus, let us take∣∣‖vi (T2) − vn(T2)‖2
2 − ‖vi (T1) − vn(T1)‖2

2

∣∣ � R. (38)
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We will see that there are two possible causes for this jump: either the flow has large gradients
at any of the Tj , or the Lorentz force and the Hall term are large there. While both are intuitive,
the second cause is the most likely one for large times, because we will see that the gradient of
vn must be much larger than the Lorentz force to produce the same effect. Therefore we can
reasonably identify these jumps with episodes of magnetic reconnection, which will transfer
magnetic energy to vi suddenly and therefore increase its difference with vn. We start again
from (22), but this time we multiply it by vn − vi :

∂

∂t
‖vn − vi‖2

2 = vi · ∇vi · (vn − vi ) − vn · ∇vn · (vn − vi )

− k

(
1

ρn

+
1

ρi

)
‖vi − vi‖2

2 − 1

ρn

∇Pn · (vn − vi )

+
1

ρi

∇Pi · (vn − vi ) +
1

ρi

(J × B) · (vn − vi ). (39)

Therefore
∂

∂t
‖vn − vi‖2

2 = vi · ∇(vi − vn) · (vn − vi ) + (vi − vn) · ∇vn · (vn − vi )

− k

(
1

ρi

+
1

ρn

)
‖vn − vi‖2

2 − 1

ρn

∇Pn · (vn − vi )

+
1

ρn

∇Pi · (vn − vi ) − 1

ρi

(J × B) · (vn − vi ). (40)

Integrating in �, the term vi · ∇(|vi − vn|2) and the ones involving the pressures disappear
and we are left with
∂

∂t
‖vn − vi‖2

2 = −
∫

�

(vn − vi ) · ∇vn · (vn − vi ) dV

− k

(
1

ρn

+
1

ρi

) ∫
�

‖vn − vi‖2
2 dV − 1

ρi

∫
�

(J × B) · (vn − vi ) dV. (41)

Integrating this identity in time and using some elementary inequalities,

∣∣‖vn(T2) − vi (T2)‖2
2 − ‖vn(T1) − vi (T1)‖2

2

∣∣ � sup
[T1,T2]

‖∇vn‖∞
∫ T2

T1

‖vn − vi‖2
2 dt

+ k

(
1

ρn

+
1

ρi

) ∫ T2

T1

‖vn − vi‖2
2 dt +

∣∣∣∣
∫ T2

T1

dt

∫
�

(J × B) · (vn − vi ) dV

∣∣∣∣ . (42)

Let P : L2(�) → X0 denote the orthogonal projection. Then∫
�

(J × B) · (vn − vi )dV =
∫

�

P (J × B) · (vn − vi ) dV.

Let

C0 = sup
[T1,T2]

‖∇vn‖∞ + k

(
1

ρn

+
1

ρi

)
.

Assume as stated that (38) holds. By using Schwarz’s inequality,

R � C0

∫ T2

T1

‖vn − vi‖2
2 dt +

(∫
�

‖P(J × B)‖2
2 dt

)1/2 (∫ T2

T1

‖vn − vi‖2
2 dt

)1/2

. (43)

Since for T1 large the integral of ‖vn − vi‖2
2 is very small, the greatest contribution to the

right-hand side comes from the norm of the projection of the Lorentz force. It is true that a
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large C0 (either because of the velocity gradient or because of k) would increase the influence
of the purely kinetic term of (43) and thus decrease the importance of the Lorentz force. Still,
for large times the integral of ‖vn − vi‖2

2 is much smaller than its square root, so in the long
run it is the second term which predominates. Of course ‖P(J × B)‖2 � ‖J × B‖2, but the
projected term is more meaningful, since it represents the rotational part of the Lorentz force.
Recall that if we endow X0 with the L2-norm, Y1 with the H 1-norm, the curl operator is an
isomorphism between both spaces. Hence the adjoint operator is an isomorphism between
their duals; this adjoint operator coincides formally with ∇× in the sense of distributions. If
we consider the scalar product in L2 as the dual action, X0 is its own dual and ∇× : X0 → Y ∗

1
is an isomorphism. In particular,

‖P(J × B)‖2 � M‖∇ × P(J × B)‖Y ∗
1

= M‖∇ × (J × B)‖Y ∗
1
. (44)

This, together with (43), proves that the weak norm (H 1
t )∗ (and therefore the H−1-norm) of the

Hall term must be large at the jump episodes. Equation (43) shows too that the more advanced
the time, the larger must be the Lorentz force to obtain sizeable bursts in ‖vn − vi‖2; thus in
the long run the possible bursts tend to disappear and both plasma species will flow together.
As explained in the previous section, the magnetic field will tend to be near configurations of
magnetostatic equilibria. This, of course, could be prevented by the presence of non-gradient
forcing terms in either of the momentum equations or in the induction one. Forcing terms
are usually present in astrophysical models, as well as compressibility of the plasma, so
that our results cannot be said to predict in all cases a quasi stable evolution punctuated by
progressively smaller events where there is energy interchange in all real physical situations.
Still, this would be the case would the flow be left to its own devices.

Let us recall that what we have proved rigorously is the intermittency of reconnection
events, in the presence or the absence of the Hall effect; and that at these events, both the
Lorentz force and the Hall term are large, which intuitively seem to point in the direction of
magnetic reconnection. Unfortunately, we cannot prove that these events occur at all. Their
possible existence for large times could contradict the proposed enhancement of turbulent
diffusion by ambipolar drift, [7, 12] agreeing more with [13], which shows that a turbulent
neutral flow and strong magnetic field reduce turbulent diffusion.

6. Conclusions

When two species of fluids, a ionized and a neutral one, coexist with a magnetic field the
magnetohydrodynamic evolution of the flow is conditioned by the drag due to the collisions
between both species. In fact the difference of velocities is square integrable, which only
allows for progressively shorter intervals where both flows differ markedly from one another.
It is proved that in the quiescent periods, where this difference is small, the Lorentz force is
close in average to a gradient, thus satisfying approximately the equation of magnetostatic
equilibria. Also its curl, the Hall term, is small; the kinetic energies of the ionized and the
neutral flows, as well as the magnetic energy, vary slowly, which means that there are no rapid
transfers from one type of energy to the other. The opposite is true in the intervals where
the difference of both velocities is large: the Lorentz force (and therefore the current) and
the Hall term are extremely large, in particular for advanced times, which accounts for the
ingredients of fast magnetic reconnection. Eventually the bursts tend to die out, unless kept
by the presence of some forcing.
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hall term J. Geophys. Res. 106 3759–72
[5] Biskamp D 2000 Magnetic Reconnection in Plasmas (Cambridge: Cambridge University Press)
[6] Indebetouw R and Zweibel E G 2000 Fragmentation instability of molecular clouds: numerical simulations

Astrophys. J. 532 361–76
[7] Brandenburg A and Zweibel E G 1994 The formation of sharp structures by ambipolar diffusion Astrophys.

J. 427 L91–4
[8] Low B C and Wolfson R 1988 Spontaneous formation of electric current sheets and the origin of solar flares

Astrophys. J. 324 574–81
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